O Level Chemistry

Chap 10: Chemical Calculations

Basic Chemical Calculations

1) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}$ (s) means that

- $2 \mathrm{~mol} / 48 \mathrm{~g}$ of magnesium reacts with $1 \mathrm{~mol} / 32 \mathrm{~g}$ of oxygen to produce $2 \mathrm{~mol} / 80 \mathrm{~g}$ of magnesium oxide.

2) $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$

Therefore,

2) Example: Calculate the mass of water produced in the complete combustion of 4 g of methane, given the equation:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}$ (g) $\rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$ (I)
Amt of $\mathrm{CH}_{4}=\frac{4}{16}$

$$
=0.25 \mathrm{~mol}
$$

According to the eqn, 1 mol of CH_{4} forms 2 mol of $\mathrm{H}_{2} \mathrm{O}$.

$$
0.25 \mathrm{~mol}^{2} \mathrm{CH}_{4} \text { forms } 0.5 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{O} \text {. }
$$

$$
\begin{aligned}
\text { Mass of water produced } & =0.5 \mathrm{~mol} \times 18 \\
& =9 \mathrm{~g}
\end{aligned}
$$

3) For chemical calculations involving gases, we can use the volume of the gas to compare the ratio of the reactants and products (change moles to volume). This is because the volume of gas is proportional to its number of moles. [For gases to compare volume only!]
4) Example: Hydrogen reacts with water to form water according to the equation below. Given that the volume of hydrogen is $10 \mathrm{~cm}^{3}$, calculate
(a) the volume of oxygen gas required for the reaction
(b) the amount of water (in moles) produced.
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(a) According to the eqn, 2 mol of hydrogen reacts with 1 mol of oxygen.

Volume of oxygen required $=\frac{10}{2}$

$$
=5 \mathrm{~cm}^{3}
$$

(b) Amt of hydrogen reacted $=\frac{10}{24000}$

$$
\approx 4.167 \times 10^{-4} \mathrm{~mol}
$$

According to the eqn, 2 mol of hydrogen forms 2 mol of water.
\therefore Amt of water produced $=4.167 \times 10^{-4} \mathrm{~mol}$

Concentration of solutions

5) The concentration of a solution is the amount of solute dissolved per unit volume in a solution.
6) Concentration $\left(\mathbf{m o l} / \mathrm{dm}^{3}\right)=\frac{\text { Amt of solute (mol) }}{\text { Volume }\left(\mathbf{d m}^{3}\right)}$

Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Volume }\left(\mathrm{dm}^{3}\right)}$
Concentration $\left(\mathbf{m o l} / \mathrm{dm}^{3}\right)=\frac{\text { Concentration }\left(\mathrm{g} / \mathrm{dm}^{3}\right)}{M_{r}}$
Note: Concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ is also known as molar concentration (M).
7) Example: A $50 \mathrm{~cm}^{3}$ solution is formed by 8 g of NaOH . Calculate
(a) the concentration in $\mathrm{g} / \mathrm{dm}^{3}$
(b) the molar concentration ($\mathrm{mol} / \mathrm{dm}^{3}$), using your answer in (a)
(c) the mass of NaOH in $75 \mathrm{~cm}^{3}$ of the solution.
(a) Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{8 g}{50 / 1000}$

$$
=160 \mathrm{~g} / \mathrm{dm}^{3}
$$

(b) Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=\frac{160}{23+16+1}$

$$
=4 \mathrm{~mol} / \mathrm{dm}^{3}
$$

(c) Mass of $\mathrm{NaOH}=$ concentration x volume

$$
\begin{aligned}
& =160 \times \frac{75}{1000} \\
& =12 \mathrm{~g}
\end{aligned}
$$

Limiting Reactant

8) Limiting reactant is the reactant that is completely used up in a reaction and which limits the amount of products formed.
9) Example: Zinc reacts with hydrochloric acid according to the equation below.
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Given that 0.05 mol of zinc was added to 0.075 mol of hydrochloric acid,
a) Identify the limiting reactant. Calculate the amount (in moles) of excess reactant which remained unreacted.
b) Calculate the mass of ZnCl_{2} produced.
a) According to the eqn, 1 mol of Zn reacts with 2 mol of HCl .
$\therefore 0.05 \mathrm{~mol}$ of Zn reacts with 0.10 mol of HCl .
HCl is the limiting reactant.
Amt of Zn in excess $=0.05-0.0375$

$$
=0.0125 \mathrm{~mol}
$$

b) According to the eqn, 2 mol of HCl forms 1 mol of ZnCl_{2}.
$\therefore 0.075 \mathrm{~mol}$ of HCL forms 0.0375 mol of ZnCl_{2}.

$$
\text { Mass of } \mathrm{ZnCl}_{2}=0.0375 \times[65+2(35.5)]
$$

$$
=5.1 \mathrm{~g}
$$

10) Example: A mixture of 8.0 g of hydrogen and 8.0 g of oxygen is ignited according to the given equation. Calculate the mass of water formed.
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Amt of $\mathrm{H}_{2}=\frac{8.0}{2}$

$$
=4 \mathrm{~mol}
$$

Amt of $\mathrm{O}_{2}=\frac{8.0}{32}$

$$
=0.25 \mathrm{~mol}
$$

According to the eqn, 2 mol of H_{2} reacts with 1 mol of O_{2}. 4 mol of H_{2} reacts with 2 mol of O_{2}.
$\therefore \mathrm{O}_{2}$ is the limiting reactant.

According to the eqn, 1 mol of O_{2} forms 2 mol of $\mathrm{H}_{2} \mathrm{O}$.
Amt of $\mathrm{H}_{2} \mathrm{O}$ formed $=0.25 \times 2$

$$
=0.5 \mathrm{~mol}
$$

Mass of $\mathrm{H}_{2} \mathrm{O}$ formed $=0.5 \times 18$

$$
=9 \mathrm{~g}
$$

Percentage yield and purity

11)

$\%$ yield $=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100 \%$
The actual yield is always lower than the theoretical yield (calculated yield according to an eqn) due to:

- Impure reactants
- Human error (transferring of solutions),
- Loss of reactants and products through evaporation
- Reversible reactions

12) $\%$ purity $=\frac{\text { Mass of pure substance }}{\text { Mass of sample }} \times \mathbf{1 0 0} \%$
13) Example: When 128 g of sulphur dioxide was reacted with excess oxygen, 140 g of sulphur trioxide was produced.
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
Calculated the percentage yield of sulphur dioxide.
Amt of $\begin{aligned} \mathrm{SO}_{2} & =\frac{128}{32+2(16)} \\ & =2 \mathrm{~mol}\end{aligned}$
According to the eqn, 2 mol of SO_{2} forms 2 mol of SO_{3}.
Theoretical mass of $\mathrm{SO}_{3}=2 \times[32+3(16)]$

$$
=160 \mathrm{~g}
$$

$\%$ yield $=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100 \%$

$$
=\frac{140 \mathrm{~g}}{160 \mathrm{~g}} \times 100 \%
$$

= 87.5\%
14) When excess hydrochloric acid was added to 6 g of impure calcium carbonate, $1200 \mathrm{~cm}^{3}$ of gas was produced.
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Calculate the percentage purity of the calcium carbonate sample.

Amt of CO_{2} produced $=\frac{1200}{24000}$
$=0.05 \mathrm{~mol}$
According to the eqn, 1 mol of CaCO_{3} forms 1 mol of CO_{2}.
0.05 mol of CaCO_{3} forms 0.05 mol of CO_{2}.
$\%$ purity of $\mathrm{CaCO}_{3}=\frac{\text { Mass of pure substance }}{\text { Mass of sample }}$

$$
\begin{aligned}
& =\frac{0.05 \times 100}{6} \times 100 \% \\
& =83.3 \%(3 \mathrm{sf})
\end{aligned}
$$

15) A 5.00 g sample of copper was contaminated with copper (II) oxide, which was found to react with 0.020 mol of hydrochloric acid.
$\mathrm{CuO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{ag}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (I)
Calculate the percentage purity of copper metal in the sample.

According to the eqn, 1 mol of CuO reacts with 2 mol of HCl .
0.010 mol of CuO reacts with 0.020 mol of HCl .

Mass of $\mathrm{CuO}=0.010 \times(64+16)$

$$
=0.80 \mathrm{~g}
$$

Mass of pure copper $=5.00 \mathrm{~g}-0.80 \mathrm{~g}$ $=4.2 \mathrm{~g}$
$\%$ purity of copper metal $=\frac{4.2}{5.0} \times 100 \%$
= 84\%

Notes:

