456/1

MATHEMATICS

Paper 1
2024

UGANDA NATIONAL EXAMINATIONS BOARD
Uganda Certificate of Education
MATHEMATICS

Paper 1

New Lower Secondary Curriculum

SCORING GUIDE

1(a) Distance from home to school using the direct route.

$(\text { Direct distance })^{2}=4^{2}+8^{2}$

$$
\begin{aligned}
\text { Direct distance } & =\sqrt{ }\left(4^{2}+8^{2}\right) \\
& =\sqrt{ }(16+64) \\
& =\sqrt{ }(80) \\
& =8.94 \mathrm{~km}
\end{aligned}
$$

(b)(i) school fees $=\frac{100-60}{100} \times 900,000 /=$

$$
\begin{aligned}
& =\frac{40}{100} \times 900,000 /= \\
& =360,000 /=
\end{aligned}
$$

$$
\begin{aligned}
\text { Uniform } & =350,000-87,500 \\
& =262,500 /=
\end{aligned}
$$

Total amount to be paid $\quad=360,000+262,500$

$$
=622,500 /=
$$

(b)(ii) Conclusion: yes, the guardian will afford the school since the total amount to be paid is less than the $700,000 /=\mathrm{s} /$ he has budgeted for school expenses.
(c)(i) Payment plan 1

First instalment $=\frac{2}{3} \times 900,000 /=$

$$
=600,000 /=
$$

Second instalment $=900,000-600,000$

$$
=300,000 /=
$$

Payment plan 2
Each instalment $=\frac{1}{3} \times 900,000 /=$

$$
=300,000 /=
$$

(c)(ii) Recommended payment plan:

Reason:

2. Let x be the number of cows to be sold and y the number of goats to be sold.
$x \geq 0, y \geq 0$
$\mathrm{x} \leq 10$
$y \geq 8$
$x+y \leq 20$
$\mathrm{y}<2 \mathrm{x}$
Sales $=1,500,000 x+200,000 y$
For $y=2 x$

x	0	1
y	0	2

For $\mathrm{x}+\mathrm{y}=20$

x	0	20
y	20	0

A graph showing the feasible region

Maximisation of sales

Optimal points (x, y)	Sales $=1,500,000 \mathrm{x}+200,000 \mathrm{y}$
$(10,10)$	$17,000,000$
$(9,11)$	$15,700,000$
$(8,12)$	$14,000,000$
$(7,13)$	$13,100,000$

(any other point(s) within the feasible region)
Conclusion: Chooses a combination that maximises sales (a combination that gives the highest amount of money).

That is, they should sell ten cows and ten goats to maximise sales and they will make $17,000,000=$.

OR

Accept any other correct method.

Qtn3.

Time(Min)	Tallies	Freq (f)	Cumm freq	Class boundary	Mid-point (x)	fx
15-19	I/I	3	3	14.5-19.5	17	51
20-24	IIII	4	7	19.5-24.5	22	88
25-29	HII HIH	10	17	24.5-29.5	27	270
30-34	HIIH HII	11	28	29.5-34.5	32	352
35-39	HIIIIII	9	37	34.5-39.5	37	333
40-44	HIII	6	43	39.5-44.5	42	252
45-49	HII II	7	50	44.5-49.5	47	329
50-54	HII	5	55	49.5-54.5	52	260
55-59	HII	5	60	54.5-59.5	57	285
-		$\sum \mathrm{f}=60$				$\sum \mathrm{fx}=\mathbf{2 2 2 0}$

(a) Mean time $=\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}=\frac{2220}{60}=37$ minutes

The assemble start time should be 37 minutes from 7:30AM since the average time of arrival of the students after 7:30 AM is 37 minutes. That is, the assembly should start at 8:07 AM.

Note: Accept calculation of any measure of central tendency followed by a relevant/appropriate explanation.

(b) EITHER

$\mathbf{7 5 \%}=75^{\text {th }}$ percentile, given by $\left(\frac{75}{100} \times N\right)^{\text {th }}$ position of cumulative frequency.
$=\left(\frac{75}{100} \times 60\right)^{\text {th }}$ position of cumulative frequency
$=45^{\text {th }}$ position of cumulative frequency

From the Ogive, $\mathbf{7 5}^{\text {th }}$ percentile $=46$ minutes. (see Ogive)

The assemble start time should be 46 minutes from 7:30AM since the arrival time of 75% of the students after 7:30AM is 46 minutes. That is, the assembly should start at 8:16AM.

OR
Note: Accept calculation of the $\mathbf{7 5}^{\text {th }}$ percentile using a formula.

Question 4

SOLUTION

EITHER

$\mathrm{n}(\varepsilon)=?, \mathrm{n}(\mathrm{A})=50, \mathrm{n}(\mathrm{B})=60, \mathrm{n}(\mathrm{C})=40, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=20, \mathrm{n}(\mathrm{A} \cap \mathrm{C})=10, \mathrm{n}(\mathrm{B} \cap \mathrm{C})=15, \mathrm{n}(\mathrm{C})_{\text {only }}=20$,
$\mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=x, \mathrm{n}(\mathrm{A} \cap \mathrm{B})_{\text {only }}=20-x, \mathrm{n}(\mathrm{A} \cap \mathrm{C})_{\text {only }}=10-x, \mathrm{n}(\mathrm{B} \cap \mathrm{C})_{\text {only }}=15-x, \mathrm{n}(\mathrm{A})_{\text {only }}=?, \mathrm{n}(\mathrm{B})_{\text {only }}=?$, $n(A U B U C)^{\prime}=40$.

OR
$\mathrm{n}(\varepsilon)=?$

Using the people who visited district C and tested positive gives;
$x+15-x+10-x+20=40$

45- $x=40$
$x=5$

Therefore, 5 people who had visited all the three districts tested positive for malaria.

The number of people who visited district A only and tested positive is given by;
$50-(x+20-x+10-x)=50-30+x=20+5=25$
The number of people who visited district B only and tested positive is given by;
$60-(x+20-x+15-x)=60-35+x=25+5=30$

The number of people who visited at least one district and tested positive is given by; $60+25+(10-x)+20=115-x=115-5=110$

The sample that was purposively selected $n(\varepsilon)=110+40=150$
Therefore the chance of testing positive for malaria having visited at least one district is given by; $\mathrm{P}($ positive having visited at least one district $)=\frac{110}{150}=0.733=73.3 \%$
The ministry should come up with interventions since the chance of testing positive having visited at least one district is high (73.3\%).

5. Sketch drawing

Distance (D) from super market to junction?
Speed $=50 \mathrm{~km} / \mathrm{h}$
Time $=45$ minutes

$$
=\frac{45}{60} \text { hours or Time }=\frac{3}{4} \text { hours or Time }=0.75 \text { hours }
$$

$$
\begin{aligned}
& \mathrm{D}=\text { Speed } \times \text { Time } \\
& \mathrm{D}=50 \times 0.75 \\
& \mathrm{D}=37.5 \mathrm{~km}
\end{aligned}
$$

Accurate drawing

(a)(i) State the bearing of the Home from the Reception.
(a)(ii)Direct route distance $=8.1 \mathrm{~cm}$

$$
\begin{aligned}
& =(8.1 \times 5) \mathrm{km} \\
& =40.5 \mathrm{~km}
\end{aligned}
$$

(ii) Distance $=40.5 \mathrm{~km}$

$$
\begin{aligned}
\text { Speed } & =50 \mathrm{~km} / \mathrm{h} \\
\text { Time } & =\frac{\text { Distance }}{\text { Speed }} \\
\text { Time } & =\frac{40.5}{50} \\
\text { Time } & =0.81 \text { hours } \\
\text { Time } & =(0.81 \times 60) \text { minutes } \\
\text { Time } & =48.6 \text { minutes } \\
\text { Time } & \approx 49 \text { minutes }
\end{aligned}
$$

We will leave home 49 minutes to 2:00 PM to reach the party venue on time.

OR

We will leave home at $1: 11 \mathrm{PM}=(2: 00 \mathrm{PM}-49$ Minute $)$ to reach the party venue on time.

QUESTION 6

Area of the triangular sides
Height (h) of the triangular side $=\sqrt{ }\left(6^{2}-3^{2}\right)$

$$
=5.196 \mathrm{~m} \text { or }(\sqrt{ } 27) \mathrm{m} \text { or }(3 \sqrt{ } 3) \mathrm{m}
$$

Area of one triangular side $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 5.196 \\
& =15.588 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the two triangular sides $=2 \times 15.588$

$$
=31.176 \mathrm{~m}^{2}
$$

Note: Accept any method of finding the area of the triangular side.

Area of the trapezium sides

Height (h) of the trapezium $=\sqrt{ }\left(6^{2}-3^{2}\right)$

$$
=5.196 \mathrm{~m} \text { or }(\sqrt{ } 27) \mathrm{m} \text { or }(3 \sqrt{ } 3) \mathrm{m}
$$

Area of one trapezium side $=\frac{1}{2} \times h(a+b)$

$$
\begin{aligned}
& =\frac{1}{2} \times 5.196(14+20) \\
& =88.332 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the two trapezium sides $=\mathbf{2 \times 8 8 . 3 3 2}$

$$
=176.664 \mathrm{~m}^{2}
$$

Total area of the roof $=\mathbf{3 1 . 1 7 6}+\mathbf{1 7 6 . 6 6 4}$

$$
=207.84 \mathrm{~m}^{2}
$$

Usable area of each iron sheet $=(10 \times 0.3) \times(2.623 \times 0.3)$

$$
=2.3607 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& =\frac{207.84}{2.3607} \\
& =88.042 \\
& \approx 89
\end{aligned}
$$

Cost of iron sheets

Type A	Type B
A discount of 6\% on every 50 iron sheets	A discount of 10\% on every 70 iron sheets
$\left(\frac{100-6}{100} \times 33,000 \times 50\right)+(89-50) \times 33,000$ $=2,838,000 /=$ $\left(\frac{100-10}{100} \times 42,000 \times 70\right)+(89-70) \times 42,000$ $=3,444,000 /=$	

Advise: My neighbour should buy Type A iron sheets.
Reason: They are cheaper and she will minimise costs.

OR

Advise: My neighbour should buy Type B iron sheets.
Reason: Since they are expensive, they are likely to be of a better quality than Type A.
$\left.\begin{array}{|l|l|l|l|}\hline & & & \text { SCORE } \\ \hline \mathbf{1} & \begin{array}{l}\text { TOTAL AREA OF } \\ \text { THE ROOF }\end{array} & & \text { Subtotal- 04 } \\ \hline \text { (a) } & \begin{array}{l}\text { Area of the } \\ \text { triangular side }\end{array} & & 01 \\ \hline \text { (i) } & \text { Height } & & 01 \\ \hline \text { (ii) } & \text { Substitution for Area } & \text { value } & 01 \\ \hline \text { (iii) } & \text { Area } & \text { unit } & 01 \\ \hline & & \text { Subtotal-04 } \\ \hline & \begin{array}{l}\text { Area of the } \\ \text { trapezium side }\end{array} & \text { Use of formula } & 01 \\ \hline \text { (b) } & \text { Area } & \text { Value } & 01 \\ \hline & \text { Total area of the } \\ \text { roof }\end{array}\right)$

