To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.
The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Curve Sketching
This page covers Curve Sketching within Coordinate Geometry.
Given a particular equation, you need be able to draw a quick sketch of its curve showing the main details (such as where the curve crosses the axes). You should be able to quickly sketch straight-line graphs, from your knowledge that in the equation y = mx + c, m is the gradient and c where the graph crosses the y-axis.
When asked to sketch a more complicated curve, there are a number of things that you should work out before drawing your sketch:
Example
Sketch the graph of y = 1 + x
1 – x
1) Asymptotes: When x = 1, we end up dividing by zero so there will be an asymptote at x = 1.
Also think about what happens when y = -1.
-1 = 1 + x
1 – x
-1(1 – x) = 1 + x
-1 + x = 1 + x
-1 = 1.
This cannot happen, since -1 ¹ 1, so the graph cannot be defined for y = -1. This is therefore another asymptote.
2) Where the axes are crossed: When x = 0, y = 1. Therefore the curve crosses the y-axis at (0,1).
When y = 0, 1 + x = 0 so x = -1. Therefore the curve crosses the x-axis at (-1, 0).
3) As x becomes large, 1 + x will become large and positive and 1 – x will become large and negative. Therefore as x becomes large, y = large/-large = -1. As x becomes very large and negative, 1 + x will become very large and negative and 1 – x will become very large and positive. Therefore y = -large/large = -1.
4) By substituting in -x for x it can be seen that the graph is not symmetrical in the x axis.
The sketch of the graph would therefore look something like this:
Note that the curve does not cut the lines that we have found to be asymptotes, but it gets extremely close to them.