To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.
The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
NUMBER BASES
Sub-topic 1: Representing Numbers in Different
Bases on the Abacus
Decimal to Other Bases
Converting a decimal number to other base numbers is easy. We have to divide the decimal number by the converted value of the new base.
Decimal to Binary Number:
Suppose if we have to convert decimal to binary, then divide the decimal number by 2.
Example 1. Convert (25)10 to binary number.
Solution: Let us create a table based on this question.
Therefore, from the above table, we can write,
(25)10 = (11001)2
Decimal to Octal Number:
To convert decimal to octal number we have to divide the given original number by 8 such that base 10 changes to base 8. Let us understand with the help of an example.
Example 2: Convert 12810 to octal number.
Solution: Let us represent the conversion in tabular form.
Therefore, the equivalent octal number = 2008
Decimal to Hexadecimal:
Again in decimal to hex conversion, we have to divide the given decimal number by 16.
Example 3: Convert 12810 to hex.
Solution: As per the method, we can create a table;
Therefore, the equivalent hexadecimal number is 8016
Here MSB stands for a Most significant bit and LSB stands for a least significant bit.
Other Base System to Decimal Conversion
Binary to Decimal:
In this conversion, binary number to a decimal number, we use multiplication method, in such a way that, if a number with base n has to be converted into a number with base 10, then each digit of the given number is multiplied from MSB to LSB with reducing the power of the base. Let us understand this conversion with the help of an example.
Example 1. Convert (1101)2 into a decimal number.
Solution: Given a binary number (1101)2.
Now, multiplying each digit from MSB to LSB with reducing the power of the base number 2.
1 × 23 + 1 × 22 + 0 × 21 + 1 × 20
= 8 + 4 + 0 + 1
= 13
Therefore, (1101)2 = (13)10
Octal to Decimal:
To convert octal to decimal, we multiply the digits of octal number with decreasing power of the base number 8, starting from MSB to LSB and then add them all together.
Example 2: Convert 228 to decimal number.
Solution: Given, 228
2 x 81 + 2 x 80
= 16 + 2
= 18
Therefore, 228 = 1810
Hexadecimal to Decimal:
Example 3: Convert 12116 to decimal number.
Solution: 1 x 162 + 2 x 161 + 1 x 160
= 16 x 16 + 2 x 16 + 1 x 1
= 289
Therefore, 12116 = 28910
Hexadecimal to Binary Shortcut Method
To convert hexadecimal numbers to binary and vice versa is easy, you just have to memorize the table given below.
You can easily solve the problems based on hexadecimal and binary conversions with the help of this table. Let us take an example.
Example: Convert (89)16 into a binary number.
Solution: From the table, we can get the binary value of 8 and 9, hexadecimal base numbers.
8 = 1000 and 9 = 1001
Therefore, (89)16 = (10001001)2
Octal to Binary Shortcut Method
To convert octal to binary number, we can simply use the table. Just like having a table for hexadecimal and its equivalent binary, in the same way, we have a table for octal and its equivalent binary number.
Example: Convert (214)8 into a binary number.
Solution: From the table, we know,
2 → 010
1 → 001
4 → 100
Therefore,(214)8 = (010001100)2
Assignment
ASSIGNMENT : NUMBER BASES ASSIGNMENT MARKS : 20 DURATION : 1 week, 3 days
ASSIGNMENT : LSC: NUMBER BASES 1 ASSIGNMENT MARKS : 20 DURATION : 1 week, 3 days