• LOGIN
  • No products in the cart.

MTH61: ODD AND EVEN POWERS OF SINE AND COSINE

This unit is about integration of even and odd powers of sine and cosine. it also includes the integration of inverse trigonometric functions.

Odd Power of Sine or Cosine

To integrate an odd power of sine or cosine, we separate a single factor and convert the remaining even power.

If the power of cosine is odd (n = 2k + 1), save one cosine factor and use the identity sin2 x + cos2 x = 1 to express the remaining factors in terms of sine:

Let u = sin x then du = cos dx

If the power of sine is odd (n = 2k + 1), save one sine factor and use the identity sin2 x + cos2 x = 1 to express the remaining factors in terms of cosine:

Let u = cos x then du = – sin x dx

Sine and Cosine

Note: If the powers of both sine and cosine are odd, either of the above methods can be used.

Example:

Evaluate 

Solution:

Step 1:

Separate one cosine factor and convert the remaining cos2 x factor to an expression involving sine using the identity sin2 x + cos2 x = 1

Step 2:

Let u = sin x then du = cos dx

Example:

Evaluate 

Solution:

Step 1:

Separate one sine factor and convert the remaining sin 4 x factor to an expression involving cos using the identity sin2 x + cos2 x = 1

Step 2:

Let u = cos x then du = – sin x dx

Even Powers of Sine and Cosine

If the powers of both the sine and cosine are even, use the half-angle identities

Example:

Find 

Solution:

If we write sin2 x as 1 – cos2 x, the integral is no simpler to evaluate.

Instead, we use the half-angle formula for 

Example:

Find 

Solution:

We write sin4 x as (sin2 x)2 and use a half-angle formula:

In order to evaluate cos2 2x, we use the half angle formula 

Integration: Inverse Trigonometric Forms

Assignment

ODD AND EVEN POWERS ASSIGNMENT

ASSIGNMENT : ODD AND EVEN POWERS ASSIGNMENT MARKS : 20  DURATION : 1 week, 3 days

 

Courses

Featured Downloads